## Notes and a few figures for discussion of $\mu$ -bar vs. E for neutron elastic scattering on actinides at low energies

D. Roubtsov, K. Kozier CRL, AECL, Canada December 2010

See presentations of T. Kawano, CSEWG-2010 (in Santa Fe, NM) <a href="http://www.nndc.bnl.gov/proceedings/2010csewgusndp/Thursday/AFCIP/modscat-Kawano.pdf">http://www.nndc.bnl.gov/proceedings/2010csewgusndp/Thursday/AFCIP/modscat-Kawano.pdf</a> and at WINS-2010 (Strasbourg).

In a typical ENDF/B file, for MT=2 (*i.e.*, for the elastic scattering channel of n + A), there are two data blocks: MF=3, MT=2 for the scattering cross sections,  $\sigma_s(E)$ , and MF=4, MT=2 for the scattering angular distributions,  $P_s(E, \mu)$ , usually given in the CM-frame and normalized to one,  $\int_{-1}^{1} P_s(E, \mu) d\mu = 1$ .

For heavy elements, CM- and LAB-frames of  $n + A \rightarrow n + A$  are almost indistinguishable, *i.e.*,

$$P_{\rm s}^{\rm (CM)}(E,\mu_{\rm CM}) \approx P_{\rm s}^{\rm (LAB)}(E,\mu_{\rm LAB}).$$

Then, the elastic scattering differential cross section,  $d\sigma_s(E, \mu)/d\Omega$ , can be written as

$$d\sigma_s(E, \mu)/d\Omega = \sigma_s(E) \times P_s(E, \mu)/2\pi$$
, in [b/sr].

There is **no** MF=6, MT=2 data block for  $d^2\sigma_s(E \to E', \mu)/dE'd\Omega$  in ENDF/B files because

$$d^2\sigma_s(E \to E', \mu)/dE'd\Omega = \sigma_s(E) \times P_s(E, E', \mu)/2\pi = \sigma_s(E) \times P_s(E, \mu) \times P_s(E \to E')/2\pi$$

i.e.,  $P_s(E, E', \mu) = P_s(E, \mu) P_s(E \to E')$ . It is assumed that the energy distribution of elastic scattering  $P_s(E \to E')$  is independent of  $\mu$  and it follows from the kinematics (in the limit  $T \to 0$  K). As  $P_s(E, \mu)$  is normalized to unity, the average scattering cosine of neutron elastic scattering,  $\mu$ -bar, can be calculated as follows:

$$\mu$$
-bar =  $\iint \mu \times d^2 \sigma_s(E \to E', \mu)/dE' d\Omega / \iint d^2 \sigma_s(E \to E', \mu)/dE' d\Omega = \int_{-1}^{1} \mu \times P_s(E, \mu) d\mu$ .

Assume that a given ENDF/B file was processed by NJOY99 into a **fast** ACE file corresponding to a given temperature  $T \neq 0$  K). Then,  $\sigma_s(E)$  is Doppler broadened,  $\sigma_s(E) \rightarrow \sigma_s(E; T)$ , using the resonance parameters from MF = 2 (if any).

## What happens with $P_s(E, \mu)$ ?

In other words, how does NJOY99 process MF=4, MT=2 data for MCNP(X)?

If  $P_s(E, \mu)$  is given in the form of tables, i.e., for each  $E_i$ , there is a table of k entities,

$$(\mu_{ik}, P_{s, ik}), -1.0 \le \mu_{ik} \le 1.0,$$

then these data points are transferred to the fast ACE file *as they are* in the original ENDF/B file. Thus, NJOY99 does the following transformation:

ENDF/B MF=4, MT=2 
$$(E_i, \mu_{jk}, P_{s, jk}) \rightarrow ACE (E_i, \mu_{jk}, P_{s, jk}, P_{s, jk}^c)$$
. (1)

Here,  $P_{s,ik}^c$  is the cumulative angular distribution,  $P_s^c(E, \mu) = \int_{-1}^{\mu} P_s(E, \mu') d\mu'$ .

Note that there are **no changes**: the same grids for  $E_j$  and for  $\mu_{jk}$  are in both ENDF/B MF=4, MT=2 and in the corresponding ACE part, and  $P_{s, jk}$  and  $P_{s, jk}^c$  are independent on temperature T.

If  $P_s(E, \mu)$  is given in the form of Legendre polynomial expansion, *i.e.*, for each  $E_j$ , there is a 'vector' of coefficients,

$$a_{s, jl}, l = 1, \dots, l_{max, j},$$

then **acer** module of NJOY99 [ptleg2] converts vectors  $a_{s, jl}$  into tables  $(\mu_{jk}, P_{s, jk})$  by choosing an **optimal grid** of the scattering cosines  $\mu_{jk}$  (for each  $E_j$ ) and applying

$$P_{s, ik} = 1/2 + \sum_{l=1} ((2l+1)/2) \times a_{s, il} \times P_l(\mu_{ik}).$$

Therefore, NJOY99 does the following transformation:

ENDF/B MF=4, MT=2 
$$(E_{i}, a_{s, il}, l_{\text{max}, i}) \rightarrow \text{ACE} (E_{i}, \mu_{ik}, P_{s, ik}, P_{s, ik}^{c}).$$
 (2)

Note that the same grid  $E_j$  is in both ENDF/B MF=4, MT=2 and in the corresponding ACE part, and  $P_{s, jk}$  and  $P_{s, jk}^c$  are independent on T.

As  $P_1(\mu) = \mu$ , the coefficient  $a_{s,j1}$  (l=1) is the  $\mu$ -bar for neutron elastic scattering at  $E_j$ ,

$$\mu$$
-bar( $E_i$ ) =  $a_{s, i1}$ .

 $P_s^c(E, \mu)$  data given in ACE files are useful to estimate the integral backward-to-forward scattering ratio (B2FR) vs. E (in the CM frame, strictly speaking):

B2FR = 
$$\int_{-1}^{0} P_s(E, \mu) d\mu / \int_{0}^{1} P_s(E, \mu) d\mu = P_s^c(E, \mu = 0) / (1 - P_s^c(E, \mu = 0)).$$

One can check Figures given at <a href="https://t2.lanl.gov/nis/data/endf/endfvii-n.html">https://t2.lanl.gov/nis/data/endf/endfvii-n.html</a> under "view PDF plots". These plots are visualization of the typical results obtained by processing of a given ENDF/B file of ENDF/B-VII.0 into a fast ACE file (at room temperature) with NJOY99.

For  $^{238}$ U, check Figure **36** (page 36), subtitle "angular distribution for elastic": this is  $P_s(E, \mu)$  plotted from the data block  $(E_j, \mu_{jk}, P_{s, jk})$  calculated/processed by **NJOY99** (**acer**) from the original MF=4, MT=2 of  $^{238}$ U.

Below, we show a similar figure for  $P_s(E, \mu)$  of <sup>238</sup>U obtained from an ACER output in the energy region 1eV < E < 1.0 MeV. We used JENDL 4.0 <sup>238</sup>U because MF=4, MT=2 of this file has a better (denser)  $E_i$  grid for visualization of  $P_s(E, \mu)$  at low energies.



**Fig. 1**:  $P_s(E, \mu)$  of <sup>238</sup>U (JENDL 4.0), 1.0 eV < E < 1.0 MeV. Conversion from  $(E_j, a_{s, jl})$  to  $(E_j, \mu_{jk}, P_{s, jk})$  and selection of optimal  $\mu_{jk}$  are done by **acer** module of NJOY99. For example,  $dim_k(\mu_{jk}) = 3$  for  $E_j \le 20.0$  keV.

As follows from Fig. 1, in the Resolved Resonance Energy Region, E < 20 keV (ENDF/B-VII.0), one can use **P1** approximation for  $P_s(E, \mu)$  of <sup>238</sup>U:

$$P_s(E, \mu) \approx 1/2 + (3/2) \times \mu$$
-bar $(E) \times \mu$ .

 $\mu$ -bar(E) for <sup>238</sup>U is given in Fig. 2 for low neutron energies, 1 eV < E < 0.3 MeV.

We did not find experimental data for  $d\sigma_s(E,\mu)/d\Omega$  or  $P_s(E,\mu)$  of  $^{238}U$  at the incident energies E lying in the  $^{238}U$  RRR in EXFOR database. The lowest energy data sets that we noticed are

E = 55 keV by Murzin-1987 and E = 75 keV by Barnard-1966, then  $E \approx 150 \text{ keV}$ , etc., i.e., the lowest energies are lying in the <sup>238</sup>U **URR**.

(EXFOR search: U-238; n,\*; DA.)

Note that, at E > 50-100 keV, the **inelastic** scattering channels with excitation of the lowest levels of  $^{238}$ U open up.



**Fig. 2**: μ-bar(*E*) for <sup>238</sup>U; μ-bar(*E*) <  $10^{-3}$  at E < 1-2 keV; RRR boundary: 20 keV, URR boundary: 149 keV (ENDF/B-VII.0). (In ENDF/B-VII.0, the grid starts as  $E_1 = 10^{-5}$  eV,  $E_2 = 50$  keV, ... in MF=4, MT=2 of <sup>238</sup>U.)

Similar results can be obtained for <sup>232</sup>Th.

As follows from Fig. 3, in the Resolved Resonance Energy Region, E < 4 keV (ENDF/B-VII.0), one can use P1 approximation for  $P_s(E, \mu)$  of <sup>232</sup>Th:

$$P_s(E, \mu) \approx 1/2 + (3/2) \times \mu - bar(E) \times \mu$$
.

 $\mu$ -bar(E) for <sup>232</sup>Th is given in Fig. 4 for low neutron energies, 1 eV < E < 0.3 MeV. Similarly, we did not find experimental data for  $d\sigma_s(E,\mu)/d\Omega$  or  $P_s(E,\mu)$  of <sup>232</sup>Th at the incident energies E in the <sup>232</sup>Th **RRR** in EXFOR database.

The angular distribution data in EXFOR are at E > 100 keV, *i.e.*, they are even outside <sup>232</sup>Th URR (and at the incident neutron energies at which the inelastic scattering channels open up).

EXFOR search: Th-232; n,\*; DA.

There is a paper by Samosvat-1970, "ANGULAR DISTRIBUTIONS OF SCATTERING OF 1-40 KEV NEUTRONS" with Legendre coefficients ( $a_{s,i1}$ ?) and  $E_{min} = 1.6$  keV.



Fig. 3:  $P_s(E, \mu)$  of <sup>232</sup>Th (ENDF/B-VII.0), 1 eV < E < 1.0 MeV. Conversion from  $(E_j, a_{s,jl})$  to  $(E_j, \mu_{jk}, P_{s,jk})$  and selection of optimal  $\mu_{jk}$  are done by **acer** module of NJOY99. For example,  $dim_k(\mu_{jk}) = 3$  for  $E_j \le 60$  keV.

(We added a few  $E_j$  between the original grid points,  $E_1 = 10^{-5}$  eV and  $E_2 = 1.0$  keV of MF=4, MT=2 of <sup>232</sup>Th to improve visual perception).



**Fig. 4**: μ-bar(*E*) for  $^{232}$ Th; μ-bar(*E*) <  $10^{-3}$  at *E* < 1.0-1.5 keV. RRR boundary: 4 keV, URR boundary: 100 keV (ENDF/B-VII.0). (In ENDF/B-VII.0, the grid starts as  $E_1 = 10^{-5}$  eV,  $E_2 = 1.0$  keV in MF=4, MT=2 of  $^{232}$ Th.)

In Fig. 5, we show the resonance behavior of  $\sigma_s(E)$  and  $\sigma_{n,\gamma}(E)$  for <sup>238</sup>U and <sup>232</sup>Th at low energies, 1 eV< E < 1 keV. As  $\sigma_s$  vs. E has a pronounced s-wave resonance character at low energies, we have, roughly,

$$P_{\rm s}(E,\mu)\approx 1/2,$$

*i.e.*, nearly isotropic angular scattering distributions at low energies E < 1 keV for  $n + {}^{238}\text{U}$  and  $n + {}^{232}\text{Th}$ .

(**p-wave** resonances contribute to  $\sigma_s(E)$  at E > 1 keV, roughly.)



**Fig. 5**: low-lying neutron resonances of <sup>238</sup>U and <sup>232</sup>Th (ENDF/B-VII.0, NJOY99) at 1 eV< E < 1 keV. Almost all the low-lying **scattering** resonances of  $\sigma_s(E)$  are s-wave type and  $\mu$ -bar(E) < 10<sup>-3</sup> at E < 1.0 keV. (DBRC cut-off = 210.0 eV, R. Dagan).